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Abstract. We generalize the Landau Fermi-liquid theory for describing kinetic phenomena in
heavy-fermion compounds at low temperatures. The kinetic equation is derived and solved for
the case when collisions between quasi-particles are negligible. Collective zero-sound and spin-
wave modes are studied. We found that zero-sound modes are broken down by phase fluctuations.
Symmetric collective spin excitations consist of acoustic-like and optical-like modes. The former
excitations are decaying, whereas the latter excitations are stable. Electron spin resonance is also
investigated. It is found that localized f electrons give the main contribution to the resonance and
determine the resonance frequency. The usual Landau parametersF s

0 andFa
0 for heavy-fermion

systems are determined.

1. Introduction

Not only the thermodynamic properties but also the kinetic phenomena in heavy-fermion
compounds are unusual [1–3]. The specific properties of these compounds are determined
by strong interactions between conduction electrons and localized electrons of partially filled
f shells of rare-earth and uranium ions. It is well known that with decreasing temperature in
the compounds a gradual transition from incoherent Kondo scattering to coherent scattering
takes place. It produces a marked effect on almost all the properties of the compounds.
At temperatures below the Kondo temperatureT0 the coherent Kondo state is formed. In
this state the compounds behave as normal Fermi liquids with heavy quasi-particles near
the Fermi surface and a very low Fermi temperature of the order ofT0. Evidence for this
may be found in the temperature dependences of the heat capacity, magnetic susceptibility
and conductivity [1–3]. Some peculiarities of kinetic phenomena in the compounds may
be described within slave-boson models via the 1/N expansion [4–9]. This approach also
enables us to calculate some dynamic correlation functions [6, 9, 10]. Unfortunately the
application of the 1/N expansion to conventional models encounters important problems.
One of them is related to taking into account the RKKY interaction between f electrons.
The next problem is related to the time description of the dynamic phenomena. Calculations
of dynamic correlation functions within high-degeneracy models are based on the Mazubara
method within which we have to deal with imaginary time and frequencies with a subsequent
analytical continuation on the real axis.

In the present paper we derive a description of dynamic phenomena in heavy-fermion
compounds within the generalized Landau Fermi-liquid theory proposed in our previous
paper [11] where we have shown that the phenomenological approach gives a detailed
description of the low-temperature thermodynamic properties of the heavy-fermion ground
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458 A V Goltsev

state in agreement with microscopic approaches [8, 9]. Moreover the Landau-like approach
has enabled us to study the ferromagnetic phase transition stimulated by the RKKY
interaction. In the present paper we shall consider dynamic phenomena that arise for
a small deviation from the equilibrium heavy-fermion state. In section 2 the linearized
kinetic equation is derived and solved in the case when collisions between quasi-particles
may be neglected. Then in section 3 we investigate zero-sound modes. We shall show that
the modes are completely suppressed by phase fluctuations that are specific to the heavy-
fermion system in which electrons form a coherent Fermi liquid. In section 4, collective
spin-wave excitations are studied. It should be noted that in this case the RKKY interaction
plays a very important role. We shall show that the spectrum of symmetric spin-wave
excitations consists of acoustic-like and optical-like spin excitations. The former excitations
are decaying, but the latter excitations are stable. In section 5 we shall study electron spin
resonance. Finally, section 6 gives a discussion of our results.

2. Kinetic equation

Let us consider an electron system that consists of conduction electrons in a wide conduction
band ε(k) and electrons in a very narrow f band. If the dispersion of the f band is
negligible, then f electrons may be supposed to be localized on the energy levelεf that
is placed sufficiently deeply under the Fermi surface. If the Hubbard repulsion between f
electrons on the level is large enough, then the number of electrons on the level is fixed
and is about 1. An interaction between conduction electrons and f electrons is caused by
electron transitions between states in the conduction and f bands. We also suppose that the
crystal-field interactions leave us with a double ground state.

In accordance with the generalized Landau Fermi-liquid theory proposed in [11] an
equilibrium distribution of the conduction and f electrons in the system is described by a
distribution matrixNab

0αβ(k) with the band indicesa, b = c, f and spin indicesα andβ for

s = 1
2 spins. It is convenient to present the matrix in the block form

N0(k) =
[

Nc
0αβ(k) N

cf

0αβ(k)

N
f c

0αβ(k) N
f

0αβ(k)

]
. (2.1)

The diagonal elementsNc
0αβ(k) and N

f

0αβ(k) describe the equilibrium distribution of
electrons over states in the conduction and f bands, respectively. The non-diagonal elements
(N

cf

0αβ(k) = (N
f c

0βα(k))∗) arise owing to the assumption that, in the low-temperature region
T � T0, quasi-particle states near the Fermi surface are a quantum superposition of electron
states in the conduction and f bands. Unlike the diagonal matrix elements that are real
functions, in the general case the non-diagonal elements are complex functions.

Let us study the fluctuations of the distribution matrix about the equilibrium matrixN0

N(k, r, t) = N0(k) + N1(k, r, t). (2.2)

The fluctuations lead to space and time dependences of the quasi-particle energy matrix

ε(k, r, t) = ε0(k) + ε1(k, r, t). (2.3)

If we take into account only the exchange interaction between conduction and f electrons and
neglect the potential interactions between electrons, then, in the equilibrium state, elements
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of the quasi-particle energy matrix are given by

εc
0αβ(k) = ε(k)δαβ − hc

0(k) · σαβ

ε
f

0αβ(k) = ε̃f δαβ − h
f

0 (k) · σαβ

ε
cf

0αβ(k) = b(k)δαβ

(2.4)

wherehc
0(k) andh

f

0 (k) are the equilibrium effective magnetic fields which affect conduction
and f electrons, respectively [11]. These fields and the functionb(k) that characterizes the
formation of the coherent state are related to the equilibrium distribution matrixN0:

hc
0(k) = 1

2gcµBH0 − 1

Nu

∑
γ δp

G(k, p)σγ δN
f

0δγ (p)

h
f

0 (k) = 1
2gf µBH0 − 1

Nu

∑
γ δp

G(k, p)σγ δN
c
0δγ (p)

b(k) = 1

Nu

∑
γp

ϕ(k, p)N
cf

0γ γ (p)

(2.5)

whereNu is the number of unit cells. Below we shall suppose that an external magnetic
field H0 is parallel to thez axis. The functionsG(k, p) andϕ(k, p) describe the exchange
interaction between conduction electrons in the bandε(k) and f electrons on the f level
with the effective energỹεf . In the general case the coherence parameterb(k) is complex.
Hence, it is characterized by the magnitude and phase. Phase fluctuations are specific for
heavy-fermion compounds, but their role has been poorly studied as yet.

As we take into account no potential interaction, fluctuations(ε1) of the local quasi-
particle energy occur due to the fluctuations of local effective fieldshc

1 and h
f

1 acting on
conduction and f electrons, respectively, and due to fluctuations of the effectivef -level
energy:

εc
1αβ(k, r, t) = −hc

1(k, r, t)σαβ

ε
f

1αβ(k, r, t) = ε1f (r, t)δαβ − h
f

1 (k, r, t)σαβ.
(2.6)

The fieldshc
1 andh

f

1 are related to the matrixN1:

hc
1(k, r, t) = 1

2gcµBH1(r, t) − 1

Nu

∑
γ δp

G(k, p)σγ δN
f

1δγ (p, r, t) (2.7a)

h
f

1 (k, r, t) = 1
2gf µBH1(r, t) − 1

Nu

∑
γ δp

G(k, p)σγ δN
c
1δγ (p, r, t). (2.7b)

HereH1(r, t) is the time- and space-dependent part of the external magnetic field. At the
same time the fluctuationsN1 in the distribution matrix lead to fluctuations in the coherence
parameter:

ε
cf

1αβ(k, r, t) = (ε
f c

1βα(k, r, t))∗ = δαβN−1
u

∑
γp

ϕ(k, p)N
cf

1γ γ ((p, r, t). (2.7c)

It is important to note that in the general case the local effective energy of f electrons
(εf (r, t) = ε̃f +ε

f

1 (r, t)) depends onr andt . In accordance with the Landau-like approach
to heavy fermion systems [11] the value ofεf (r, t) is determined by the constraint that the
numberNf of f electrons does not depend onr and t in low-frequency processes, i.e.

Nf =
∑
kα

Nf
αα(k, r, t) = constant. (2.8)
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The equilibrium value of the effective energyε̃f is determined by

Nf =
∑
k,α

N
f

0αα(k, r, t). (2.9)

Hence, taking into account (2.2), we can write the constraint (2.8) for the fluctuations in
the form ∑

k,α

N
f

1αα(k, r, t) = 0. (2.10)

From the physical point of view this constraint is related to the fact that a change in the
occupancy off level requires too large an energy. Therefore, fluctuations in the number of
f electrons are sufficiently small and negligible in the low-frequency processes that only
will be considered in the present paper.

In accordance with the general principles of the Landau Fermi-liquid theory (see, e.g.,
[12, 13]) the time and space dependences of the distribution matrix are determined by the
kinetic equation

∂N

∂t
+ {∇rN∇kε} − {∇kN∇rε} − i[ε, N ] = I (N1) (2.11)

where the curly brackets mean that 2{AB} = AB + BA. The collision integralI (N1)

describes a change in the distribution matrix owing to electron collisions. Summing overk
and taking the trace over the band and spin indices in this equation lead to the continuity
equation

∂n/∂t + div J = 0

wheren is the total electron concentration:

n = N−1
u

∑
kα

(Nc
αα(k, r, t) + Nf

αα(k, r, t))

andJ is the quasi-particle flow. Using (2.4) and (2.6), for the paramagnetic state we find
that

J = N−1
u

∑
kα

(v0kNc
αα(k, r, t) + Ncf

αα(k, r, t)∇kεf c
αα(k, r, t) + Nf c

αα (k, r, t)∇kεcf
αα(k, r, t))

wherev0k = ∇kε(k) is the non-renormalized velocity of conduction electrons. The first
term in this equation is the contribution of conduction electrons to the quasi-particle flow.
The physical meaning of the other terms is not yet clear. If the functionϕ(k, p) is constant,
then according to (2.7c) the coherence parameterεcf does not depend onk, i.e. ∇kε

f c
αα = 0.

ThenJ takes the physically clear form

J = N−1
u

∑
kα

v0kNc
αα(k, r, t)

which shows that only conduction electrons contribute to the flow.
In the present paper we shall neglect the collisions. This means that we can only

consider processes with a frequencyω larger than the frequency of the collisions. For pure
samples at low temperaturesT � T0 the collision frequency may be sufficiently small. In
this case the linearized kinetic equation (2.11) takes the form

∂N1/∂t + {∇rN1∇kε0} − {∇kN0∇rε1} − i[ε1, N0] − i[ε0, N1] = 0 (2.12)

where ε0 and N0 are the equilibrium quasi-particle energy matrix (2.4) and distribution
matrix (2.1).
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Let us solve equation (2.12) when the characteristic space scale of the fluctuations is
much larger than the lattice constant. This means that the Fourier transformation

N1(k, r, t) =
∑

q

exp(iq · r)N1(k, q, t)

contains only wavenumbersq � kF . After the Fourier transformation the linearized kinetic
equation (2.12) looks like

∂N1/∂t + i{N1(q∇kε0)} − i{(q∇kN0)ε1} − i[ε1, N0] − i[ε0, N1] = 0 (2.13)

whereN1 ≡ N1(k, r, t) and ε1 ≡ ε1(k, r, t). To solve this equation, it is convenient to
rewrite it in the form

i
∂

∂t
N1(k, r, t) = N1(k, r, t)ε+ − ε−N1(k, q, t) + N−ε1(k, q, t) − ε1(k, q, t)N+ (2.14)

where for brevity we denote

ε± = ε0(k) ± 1
2q∇kε0(k) N± = N0(k) ± 1

2q∇kN0(k). (2.15)

After the transformation

N1 = exp(iε−t)Ñ exp(−iε+t) (2.16)

equation (2.14) looks like

1

i

∂

∂t
Ñ1 = exp(−iε−t)(ε1N+ − N−ε1) exp(iε+t). (2.17)

This enables us to find̃N1 and thenN1. So the general solution of the linearized kinetic
equation (2.13) takes the form

N1(k, q, t) = i
∫ 0

−∞
exp(−iε−y)(ε1(k, q, t + y)N+ − N−ε1(k, q, t + y)) exp(iε+y) dy.

(2.18)

However, this solution is too complicated. In many cases, one can use an approximate
solution that can be found in the following way. One can note that the equilibrium matrices
ε0(k ±q/2) andN0(k ±q/2) differ from matrices (2.15) by terms O(q2). At small q when
the terms may be neglected, one can use the following substitution in equation (2.18):

ε± = ε0(k ± q/2) N± = N0(k ± q/2). (2.19)

As in the equilibrium state the matricesε0(k) and N0(k) commutate with each other at
arbitraryk, one can diagonalize them simultaneously, using a unitary transformationUk:

ε0(k) = U−1
k EkUk N0(k) = U−1

k fkUk (2.20)

where

Ek =
[

E1kαδαβ 0
0 E2kαδαβ

]
(2.21)

fk =
[

f (E1kα)δαβ 0
0 f (E2kα)δαβ

]
. (2.22)

Here E1kα and E2kα are quasi-particle energies in two hybridized bands that will be
determined below. Moreoverf (x) = [exp((x − µ)/T ) + 1]−1. Inserting (2.19)–(2.22)
into (2.18) gives the approximate solution for the fluctuation matrixN1:

N1(k, q, t) = i
∫ 0

−∞
dy U−1

− exp(−iE−y)(U−ε1(k, q, t + y)U−1
+ f+

−f−U−ε1(k, q, t + y)U−1
+ ) exp(iE+y)U+. (2.23)
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This approximate solution of the kinetic equation (2.13) will be used below for studying
collective excitations.

3. Zero-sound modes

Now we shall study long-length zero-sound modes in the neutral heavy-fermion system.
Zero-sound oscillations change the electron density and do not change the spin density. In
zero magnetic field the oscillations are described by fluctuations of the distribution matrix
Nab

1αβ = Nab
1 δαβ and the quasi-partial energy matrixεab

1αβ = εab
1 δαβ . Then, in accordance

with (2.6) and (2.7) in theq representation, the matrix elementsεab
1 have the form

εc
1 = 0 ε

f

1 = ε
f

1 (q, t) (3.1a)

ε
cf

1 (k, q, t) = (ε
f c

1 (k, −q, t))∗ = 2N−1
u

∑
γp

ϕ(k, p)N
cf

1 (p, q, t). (3.1b)

Note thatεc
1 is equal to zero because we neglect potential interactions between electrons.

Thus zero-sound oscillations are described by three unknown functions:ε
f

1 (q, t),
ε

cf

1 (k, q, t) andε
cf

1 (k, q, t). For simplicity we shall consider only the case of the isotropic
Fermi surface. At zero magnetic field the equilibrium matricesN0 andε0 have the simple
spin structureNab

0αβ = Nab
0 δαβ and εab

0αβ = εab
0 δαβ . According to (2.4) and (2.5), in

equilibrium the elements of the quasi-particle energy matrix are equal to

εc
0(k) = ε(k) ε

f

0 (k) = ε̃f ε
cf

0 (k) = b (3.2)

where the coherence parameterb given by (2.5) does not depend onk. The unitary
transformationUk in (2.20) may be written as

Uk =
(

cosθk − sinθk

sinθk cosθk

)
. (3.3)

Then there are the following relations between the quasi-particle energiesE1k, E2k and the
angleθk:

E1k = ε̃f − b cotθk = 1
2(ε(k) + ε̃f − [(ε(k) − ε̃f )2 + 4b2]1/2)

E2k = ε̃f + b tanθk = 1
2(ε(k) + ε̃f + [(ε(k) − ε̃f )2 + 4b2]1/2).

(3.4)

It is easy to make sure that there is a gap of the order of the low-temperature Kondo scale
T0 between the lower bandE1k and the upper bandE2k. Below we shall suppose that the
total number(Nt = Nc + Nf ) of conduction and f electrons is less than 2. In this case
at zero temperature the lower band is partially filled whereas the upper band is empty, i.e.
f (E2k) = 0.

Let us consider symmetric zero-sound modes. In this case, three unknown functions
εab

1 (k, q, t) in (3.1) do not depend onk. We shall look for them in a time periodic form

εab
1 (k, q, t) = εab

1 (q, ω) exp(iωt). (3.5)

In accord with (3.1) we haveεcf

1 (q, ω) = (ε
f c

1 (−q, −ω))∗. Substituting the matrixε1 given
by (3.1) and (3.5) into equation (2.23), after simple but bulky calculations atq � kF , one
obtains the fluctuation matrixN1. The result of the calculation is presented in appendix 1.

In order to determine three unknown parametersε
f

1 , ε
cf

1 and ε
f c

1 we must solve self-
consistently equations (2.10) and (3.1b). Substituting equations (A1.2) and (A1.3) from
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appendix 1 into these equations gives a set of linear algebraic equations:

ε
f

1 (sin2 θF tan2 θF 0(q, ω) − A(ω)) + ε
cf

1 (− sin2 θF tanθF 0(q, ω) + B(ω))

+ ε
f c

1 (− sin2 θF tanθF 0(q, ω) + B(−ω)) = 0

ε
f

1 (− sin2 θF tanθF 0(q, ω) + B(ω)) + ε
cf

1 (sin2 θF 0(q, ω) − C(ω))

+ ε
f c

1 (sin2 θF 0(q, ω) + A(ω)) = ε
cf

1 /2ϕ0ρ0

ε
f

1 (− sin2 θF tanθF 0(q, ω) + B(−ω)) + ε
cf

1 (sin2 θF 0(q, ω) + A(ω))

+ ε
f c

1 (sin2 θF 0(q, ω) − C(−ω)) = ε
f c

1 /2ϕ0ρ0.

(3.6)

Here we introduce the following functions:

A(ω) = (2ρ0Nu)
−1

∑
k

f (E1k)1k sin2(2θk)(12
k − ω2)−1 (3.7)

B(ω) = (2ρ0Nu)
−1

∑
k

f (E1k) sin(2θk)

(
cos2 θk

1k − ω
− sin2 θk

1k + ω

)
(3.8)

C(ω) = (ρ0Nu)
−1

∑
k

f (E1k)

(
cos4 θk

1k − ω
+ sin4 θk

1k + ω

)
(3.9)

0(q, ω) = (ρ0Nu)
−1

∑
k

· (q · vk) cos2 θk

(q · vk) − ω
f ′(E1k) = λ

2
ln

∣∣∣∣λ + 1

λ − 1

∣∣∣∣ − 1 (3.10)

where1k = E2k −E1k is the direct energy gap between the bands (3.4),λ ≡ ω/qvF andϕ0

is the term withl = 0 in the expansion of the interaction functionϕ(k, p) in the Legendre
polynomials. According to [11], for the heavy-fermion system the parameterϕ0 must be
negative.ρ0 is the density of states in the conduction bandε(k) near the Fermi surface.

For analysing the set of equations it is suitable to use the following relations between
the functionsA(ω), B(ω) andC(ω):

B(ω) = β(ω) + ω

2b
A(ω)

C(ω) = 1

2|ϕ0|ρ0
+ ( 1

2ω2b−2 − 1)A(ω) + ω

b
β(ω)

(3.11)

where we defineβ(ω) = (B(ω) + B(−ω))/2. The latter equation in (3.11) follows from
equation (3.9) and the equality

1

2|ϕ0| = N−1
u

∑
k<kF

1−1
k (3.12)

(see equation (3.9) in [11] atT = 0). Let us introduce new variables whose physical
meaning will be discussed below:

ε′
1 = ε

cf

1 + ε
f c

1

ε′′
1 = ε

cf

1 − ε
f c

1 .
(3.13)

Summing and subtracting the last two equations in (3.6) gives

ε
f

1 (sin2 θF tan2 θF 0(q, ω) − A(ω)) + ε′
1(− sin2 θF tanθF 0(q, ω) + β(ω)) + ω

2b
A(ω)ε′′

1 = 0

(3.14a)
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ε
f

1 (− sin2 θF tanθF 0(q, ω) + β(ω)) + ε′
1(sin2 θF 0(q, ω)

+(1 − 1
4ω2b−2)A(ω)) − ω

2b
A(ω)ε′′

1 = 0 (3.14b)

ω

2b
(ε

f

1 A(ω) − ε′
1β(ω) − ω

2b
A(ω)ε′′

1) = 0. (3.14c)

Now this set of equations may be easily solved. Equation (3.14c) gives ωε′′
1/2b =

ε
f

1 − ε′
1β(ω)/A(ω). Then equation (3.14a) leads toε′

1 = ε
f

1 tanθF . Finally, equation
(3.14b) has a non-trivial solution if

(1 − 1
4ω2b−2)A2(ω) + β2(ω) = 0. (3.15)

As min1k = 2b, the functionsA(ω) and β(ω) given by (3.7), (3.8) and (3.11) are real
analytical functions ofω in the range−2b < ω < 2b. Moreover, we haveA(ω) > 0.
Hence, the right-hand side of equation (3.15) is positive and the equation has no real
solution in the frequency range. In the complex plane the functions have cuts along the
real axis at|ω| > 2b, because the integrands ink have poles at|ω| = 1k that are related
to resonance with the interband electron transitions. Thus we conclude that only a complex
solution of (3.15) is possible. This means that there are no stable zero modes in the neutral
heavy-fermion system. This result contradicts the microscopic slave-boson approach [6]. To
understand the origin of the contradiction we consider the low-frequency regionω � T0 � b

and neglect the terms of orderω/b in (3.14). Within this approximation, fluctuations in
the parameterε′′

1 are decoupled from fluctuations inεf andε′. In the frequency range the
functionsA(ω) andβ(ω) in (3.14) must be replaced by their values atω = 0. Calculations
of the parameters must be easily performed in the case when the bandε(k) is flat. For
this purpose we transform the summation overk into the integration first over the variable
E = E1k and then over the variableθ = θk:

N−1
u

∑
k

=
∫

ρ(ε) dε = ρ0

∫
dE

cos2 θk
= 4ρ0b

∫
dθ

sin2(2θ)
(3.16)

where we have used the following relations that follow from (3.4):

dE1k/dε = cos2 θk, dθk/dE1k = b−1 sin2 θk, 1k = 2b/ sin(2θk). (3.17)

Now, simple calculations give

A(0) = 1
2(cos(2θ0) − cos(2θF )) ≈ sin2 θF

β(0) = 1
2(sin(2θF ) − sin(2θ0)) ≈ 1

2 sin(2θF )
(3.18)

whereθ0 ≡ θ(k = 0) ≈ 0 andθF ≡ θ(kF ). Note that in equilibrium the parametersµ, ε̃f
andb at zero temperature [11] are given by

ε̃f − µ = T0 = µ exp(−1/(2|ϕ0|ρ0))

m∗/m0 = 1/ cos2 θF = 1 + Nf /2T0ρ0 � 1 b2 = Nf T0/2ρ0
(3.19)

wherem∗ is the renormalized quasi-particle mass near the Fermi surface, andµ = Nc/2ρ0.
Thus, within the approximation the three equations (3.14) are reduced to equations (3.14a)
and (3.14b) which have a non-trivial solution if the corresponding determinant is equal to
zero. So we obtain the conventional equation

0(q, ω) = 1/F0 (3.20)

whereF0 = tan2 θF = m∗/m0 − 1 � 1, and0(q, ω) is given by (3.10). This equation has
the solutionω = qvF (m∗/3m0)

1/2. This result and the spectral equation (3.20) have been
previously obtained in [6] within the slave-boson 1/N expansion.
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The approximation considered above shows that taking into account the fluctuations
of the parameterε′′

1 (3.13) is very important since the fluctuations break down the zero
modes found in [6]. To understand the physical meaning of the parameter, we note that in
accordance with (3.6) the parametersε

f

1 , ε
cf

1 andε
f c

1 may be chosen to be simultaneously
either real or imaginary. Let them be real. Hence we have

ε
cf

1 (q, ω) = (ε
f c

1 (−q, −ω))∗ = ε
f c

1 (−q, −ω). (3.21)

Then, using (3.13), the local fluctuations of the coherence parameterb may be written as

ε
cf

1 (r, ω) = ε
cf

1 (q, ω) exp(iq · r − iωt) + ε
cf

1 (−q, −ω) exp(−iq · r + iωt)

= ε′
1(q, ω) cos(q · r − ωt) + iε′′

1(q, ω) sin(q · r − ωt). (3.22)

Thus, the parametersε′
1 and ε′′

1 describe fluctuations in the real and imaginary parts,
respectively, of the coherence parameterb (2.5). It is obvious that the phase fluctuations in
the parameter are determined byε′′

1.
We conclude that it is the coherence phase fluctuations that break down the zero-mode

excitations in the system considered. Equation (3.20) determining the zero-mode spectrum
for normal Fermi liquids is invalid for the neutral heavy-fermion system.

It is important to note that we can identify the parameterF0 obtained as the conventional
symmetric Landau parameterF s

0 , i.e. F s
0 = tan2 θF = m∗/m0 − 1. To check this result we

calculate the compressibilityk and find that

k = k0
m∗/m0

1 + F s
0

= k0 (3.23)

wherek0 = 2ρ0/N
2
t is related to the non-interacting system. This equation confirms the

above result forF s
0 . Thus, in heavy-fermion systems at low temperatures, the compressibility

tends to the unrenormalized values. Details of the calculation will be published elsewhere.
Our result forF s

0 completely agrees with the microscopic theory [14] and the Gutzwiller
approach [15].

4. Collective spin-wave excitations

Now we shall consider collective spin-wave excitations. Although this problem is
formulated for the general case of a non-zero magnetic field, much attention will be paid
only to zero-field case.

The external magnetic fieldH0 is directed along the axisz, and a non-uniform transverse
magnetic fieldH1(r, t) is perpendicular toH0. As spin-wave excitations do not change the
quasi-particle density, the condition (2.10) is fulfilled. Then, in accordance with (2.6) the
matrix εab

1αβ(k, r, t) of fluctuations in the quasi-particle energy matrix about the equilibrium
state (2.4) have the following elements:

εc
1αβ(k, r, t) = −hc

1(k, r, t) · σαβ

ε
f

1αβ(k, r, t) = −h
f

1 (k, r, t) · σαβ

ε
cf

1αβ(k, r, t) = ε
f c

1βα(k, r, t) = 0

(4.1)

and as for spin excitations, we haveε1f (r, t) = 0. Here the fluctuating fieldshc
1 and

h
f

1 given by equations (2.7) are related to the fluctuation matrixN1. The substitution
of the matrix (4.1) into (2.23) enables us to find the fluctuation matrixN1 as a function
of the fluctuating fieldshc

1 and h
f

1 . Thus equations (2.7) may be considered as integral
equations for self-consistently determining the fluctuating fields. For simplicity we shall
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study only symmetrical spin-wave excitations. Then the fieldshc
1 andh

f

1 do not depend on
the wavenumberk.

Let us consider the time and space periodic excitations

hc
1(k, r, t) = hc(q, ω) exp(iq · r − iωt) + HC

h
f

1 (k, r, t) = hf (q, ω) exp(iq · r − iωt) + HC.
(4.2)

To find the matrixN1 from equation (2.23) it is necessary to take into account that the
unitary matrixUk in (2.20) has the following spin structure:Uab

kαβ = Uab
kαδαβ . The matrix

Uab
kα looks like (3.3) with the spin-dependent parameterθkα. In the external fieldH0 the

quasi-particle energies in the two hybridized bands have the forms:

E1kα = ε̃f α − b cotθkα = 1
2(εα(k) + ε̃f α − [(εα(k) − ε̃f α)2 + 4b2]1/2)

E2kα = ε̃f α + b tanθkα = 1
2(εα(k) + ε̃f α + [(εα(k) − ε̃f α)2 + 4b2]1/2)

(4.3)

where

εα(k) = ε(k) − σαhc
0

εf α = ε̃f − σαh
f

0

(4.4)

andσα = ±1 for upward and downward spins, respectively;hc
0 andh

f

0 are the equilibrium
effective fields acting on the conduction and f electrons, respectively. According to [11], at
fields µBH0 � T0 we have

hc
0 = 1

2µBgcH0(1 − Nf gf G0/T0gc)(1 − Tm/T0)
−1

h
f

0 = 1
2µBgf H0(1 − Tm/T0)

−1
(4.5)

where G0 is the expansion parameter withl = 0 of the exchange interaction function
G(k, p) in the Legendre polynomials. The parameterTm = 2Nf G2

0ρ0 is the scale of the
RKKY interaction between localized spins. The solution (4.5) corresponds toT0 > Tm

when the system under consideration is in the paramagnetic heavy-fermion ground state. It
is convenient to introduce the parameters

h
c(f )
+ = hc(f )

x + ihc(f )
y . (4.6)

Analogously we introduceH1+(q, ω) and

N
c(f )

1+ (k, q, ω) =
∑
αβ

(σ x
αβ + iσy

αβ)N
c(f )

1 (k, q, ω) = 2N
c(f )

1↑↓ (k, q, ω). (4.7)

Then equations (2.7) take the form

hc
+(q, ω) = 1

2gcµBH1+(q, ω) − G0Nu−1

∑
p

N
f

1+(p, q, ω) (4.8)

h
f
+(q, ω) = 1

2gf µBH1+(q, ω) − G0N
−1
u

∑
p

Nc
1+(p, q, ω). (4.9)

Substituting (4.1) into (2.23) and calculating the matrixN1, after simple but bulky calculation
we find that atT � T0 these equations may be written as a set of algebraic equations:

hc
+(q, ω) = 1

2gcµBH1+(q, ω) + Phc
+(q, ω) + Qh

f
+(q, ω)

h
f
+(q, ω) = 1

2gf µBH1+(q, ω) + V hc
+(q, ω) + Rh

f
+(q, ω)

(4.10)
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which determine two unknown parametershc
+(q, ω) andh

f
+(q, ω). The coefficientsP , Q,

V andR are functions ofq andω and are determined by

P = R = 1
2G0N

−1
u

∑
p

sin(2θd) sin(2θu)

×
(

fu − fd

E1u − E1d − ω
− fu

E1u − E2d − ω
+ fd

E2u − E1d − ω

)
Q = 2G0N

−1
u

∑
p

(
sin2 θd sin2 θu(fu − fd)

E1u − E1d − ω
+ fu cos2 θd sin2 θu

E1u − E2d − ω
− fd cos2 θu sin2 θd

E2u − E1d − ω

)

V = 2G0N
−1
u

∑
p

(
cos2 θd cos2 θu(fu − fd)

E1u − E1d − ω
+ fu cos2 θu sin2 θd

E1u − E2d − ω
− fd cos2 θd sin2 θu

E2u − E1d − ω

)
.

(4.11)

Here the indicesd and u replace the pair of indicesp and α. That is, we have
u ≡ (p + q/2, ↑), d ≡ (p − q/2, ↓) and fu(d) ≡ f (E1u(d)). The set of equations (4.10)
enables us to investigate different problems such as collective spin-wave excitations or the
response of the system to transverse magnetic fields. The latter problem will be discussed
in the next section.

First we consider collective spin-wave excitations in zero magnetic field, i.e.H0 =
H1 = 0. For long-wave excitations whenq � kF andq∇kε(k) � T0 in the leading order
in q the coefficientsP , Q, ∇ andR have the simple forms

P = R = 2G0ρ0(sin2 θF 0(q, ω) + A(ω))

V = 2G0ρ0(cos2 θF 0(q, ω) − A(ω))

Q = 2G0ρ0(sin2 θF tan2 θF 0(q, ω) − A(ω))

(4.12)

whereA(ω) and 0(q, ω) are determined by equations (3.7) and (3.10), respectively. The
spectrum of spin-wave excitations is determined by the condition that the determinant of
the set of equations (4.10) is equal to zero:

(P − 1)(R − 1) = V Q. (4.13)

First we consider low-frequency waves withω � T0 whenA(ω) ≈ A(0). Substituting
(4.12) into (4.13) leads to equation (3.20) with the negative Landau parameterF0 = −Tm/T0.
This parameter is the usual antisymmetric Landau parameterFa

0 , i.e.Fa
0 = −Tm/T0. Indeed,

the static spin susceptibility is related toFa
0 by the conventional relation

χ = χ0
m∗/m0

1 + Fa
0

.

SubstitutingFa
0 = −Tm/T0 gives the result in [11]. In the paramagnetic heavy-fermion

state we haveTm < T0 and −1 < Fa
0 < 0. In this case, according to the detailed

analysis given in [12], equation (3.20) has only a complex root. Such a solution describes
spin-wave excitations that decay owing to the Landau decay. The negative parameter
Fa

0 gives evidence for an attraction between heavy quasi-particles that can stimulate the
superconducting coupling. Note that this result agrees with Anderson’s speculation [16]
that, in heavy-fermion superconductors triplet, pairing can take place.

Apart from the damped spin waves discussed above, equation (4.13) has a solution that
corresponds to optical-like spin waves with a non-zero frequencyω < 2b at q = 0. To
find this solution, one can note that atq = 0 we have0(q = 0, ω) = 0. Then according
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to (4.12) the parametersP , Q, V andR are determined completely by the functionA(ω)

given by (3.7). Using (3.16) and (3.17), one obtains

A(ω) = 4b2
∫ θF

θ0

sin(2θ) dθ

4b2 − ω2 sin2(2θ)
= x2

(x2 − 1)1/2
tan−1

(
1

(x2 − 1)1/2

)
(4.14)

wherex = 2b/ω > 1, and we have used the facts thatθ0 ≈ 0 and 2θF ≈ π . Substituting
(4.12) with0(q = 0, ω) = 0 into (4.13) gives the spectral equation

A(ω) = 1/4G0ρ0. (4.15)

We shall suppose that the exchange interaction parameterG0 is much smaller than the
conduction band width, i.e.G0ρ0 � 1. Then equation (4.15) has the following solution:

ω0 = 2b(1 + 4π2G2
0ρ

2
0)−1/2 = 2T0(m

∗/m0 − π2Tm/T0)
1/2. (4.16)

Note thatω0 is smaller than the minimum direct gap between the hybridized bands (3.4).
Hence, at least at smallq (qvF � 2b) the attenuation of the spin waves owing to interband
electron transitions is forbidden by the energy conservation law. The same situation occurs
for intraband transitions. From the mathematical point of view this is related to the
analyticity of the functionsA(ω) and 0(q, ω) at small q in the neighbourhood of the
point ω = ω0. Thus, only the spin waves with the gapω0 are stable in the paramagnetic
heavy-fermion state.

It should be emphasized that the exchange interaction with the parameterG0 and the
RKKY interaction play decisive roles in the collective spin-wave excitations. AtG0 = 0
there are no collective spin-wave excitations because equation (4.13) has no solution.

5. Electron spin resonance

Now we consider the case of non-zero external fieldH0. We shall study the response of the
system on a non-uniform transverse magnetic fieldH1(r, t) with frequencyω. According
to sections 2 and 4 the transverse field changes the distribution functionN = N0 + N1 and
gives rise to a local transverse magnetic momentMt (r, t) that is the sum of moments of
conduction and f electrons:

Mt (r, t) = Mc(r, t) + Mf (r, t) = 1
2gcµBN−1

u

∑
γ δp

σγ δN
c
1δγ (p, r, t)

+ 1
2gf µBN−1

u

∑
γ δp

σγ δN
f

1δγ (p, r, t). (5.1)

In the isotropic case when the functionN1(p, r, t) does not depend on the direction of the
wavenumberp, the local moment (5.1) may be related to the local transverse effective fields
hc andhf that are determined by (2.7). Comparing (2.7) and (5.1) we find that

1
2gf µBhc(r, t) + 1

2gcµBhf (r, t) = 1
2gcgf µ2

BH1(r, t) − G0Mt (r, t). (5.2)

Using the variables (4.6), for the time and space periodic transverse field

H1(r, t) = H1 exp(iq · r − iωt) + HC (5.3)

equation (5.2) takes the form

1
2gf µBhc

+(q, ω) + 1
2gcµBh

f
+(q, ω) = 1

2gcgf µ2
BH1+ − G0Mt+(q, ω). (5.4)
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The fieldshc
+ andh

f
+ may be found from equations (4.10). One obtains

h
f
+(q, ω) = 1

2µBH1+
gcV + gf (1 − P)

(R − 1)(P − 1) − QV

hc
+(q, ω) = 1

2µBH1+
gf Q + gc(1 − R)

(R − 1)(P − 1) − QV
.

(5.5)

In the resonance case the denominator becomes equal to zero. Therefore the resonance
frequency is determined by equation (4.13). A general solution of the equation atH0 6= 0
is too complicated. In addition to the spin waves studied in section 4 we consider the case
of the uniform fieldH1 with q = 0. Then the parametersP , Q, V and R are given by
(4.12) with

0(q = 0, ω) = 2h0

2h0 − ω
(5.6)

where

h0 = hc
0 cos2 θF + h

f

0 sin2 θF = 1
2gf µBH0(1 − Tm/T0)

−1. (5.7)

This equality follows from (3.19) and (4.5). At low frequenciesω � T0 we can suppose that
A(ω) ≈ A(0) with A(0) given by (3.18). Then equation (4.13) for the resonance frequency
takes the form

0(q = 0, ω) = −T0/Tm. (5.8)

Using (5.6), it is easy to find the resonance frequency

ωr = 2h0(1 − Tm/T0) = gf µBH0. (5.9)

Thus we obtain well known results of the Landau Fermi-liquid theory for normal metals.
Namely, the frequency of the electron spin resonance does not depend on the specific
properties of the systems under consideration. However, it is important to draw attention to
the following fact. Although the system consists of conduction and f electrons having spin
1
2 and the gyromagnetic factorsgc and gf , respectively, the main contribution to electron
spin resonance is given by f electrons.

6. Conclusions and discussion

In the present paper we have applied the Landau Fermi-liquid theory proposed in [11] for
describing dynamic phenomena in heavy-fermion compounds at temperatures below the
Kondo temperatureT0 when the systems are in the coherent heavy-fermion state. We have
derived the kinetic equation and have solved it in the case when collisions of quasi-particles
are negligible. Within the phenomenological approach, collective zero-sound and spin-wave
excitations have been studied. Although we have considered only symmetric modes, the
approach enables us to investigate other modes.

Neglecting the Coulomb interaction, we have found that there are no zero-mode
excitations in the system under consideration. This result contradicts [6] where within
the lattice Anderson model via the slave-boson 1/N expansion the zero-sound modes
have been found. To understand the reason for the discrepancy we have considered an
approximation within which the phase fluctuations of the coherence parameter are decoupled
from fluctuations of the coherence parameter magnitude and the effective f-level energy.
This approximation gives results in the complete agreement with [6]. It enables us to
suppose that, within the slave-boson approach, complete consideration of the interactions
between different fluctuations is necessary, going beyond the next to leading order in 1/N .
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However, at the present time there is no method that enables us to sum diagrams of O(1/N2)

and higher orders. Unlike the slave-boson approach, our approach is not based on the
large-orbital degeneracy expansion and takes into account a certain interaction between the
fluctuations.

The competition between the magnetic RKKY interaction and the coherent Kondo effect
is one of the problems that may be studied using the Landau Fermi-liquid theory. In the
previous paper [11] we have studied the stability of the coherent heavy-fermion state with
respect to ferromagnetism. The results obtained here enable us to estimate the effect of
the RKKY interaction on collective spin waves. We have found that it is the ratio of
the RKKY interaction scaleTm to the Kondo scaleT0 which determines the spectrum of
collective spin-wave modes. Acoustic-like spin waves are determined by the conventional
equations (3.20) with the negative Landau parameterFa

0 = −Tm/T0. In the paramagnetic
heavy-fermion state whenTm < T0 these waves are decaying owing to the Landau decay.
Moreover the negativeFa

0 indicates an attraction between heavy quasi-particles. There are
also stable optical-like spin waves. Atq = 0 their frequency (4.16) is slightly lower than
the minimum direct energy gap between hybridized quasi-particle bands.

We have also found the symmetrical Landau parameterF s
0 = m∗/m0 − 1 in accordance

with the microscopic approaches [14, 15]. In agreement with the result at low temperatures
the compressibility (3.23) of the heavy-fermion system tends to the non-renormalized value.

We have also studied the response of the system in an external magnetic fieldH0 with an
alternative transverse magnetic field. It has been found that the frequency (5.9) of electron
spin resonance is mainly determined by f electrons and does not depend on the specific
properties of the system. We believe that an investigation of the electron spin resonance
in heavy-fermion compounds at temperaturesT < T0 enables us to obtain very important
information on the magnetic state of the f ions.

Appendix 1

In this appendix we present the approximate solution (2.23) of the linearized kinetic equation
(2.13). In the paramagnetic phase the substitution of the matrixε1 given by equations (3.1)
and (3.5) into equation (2.23) leads to the following results for the matrix elements of the
fluctuation matrixN1:

Nc
1(q, ω) = ε

f

1

[
(q · vk) sin2 θk cos2 θk

(q · vk) − ω
f ′(E1k) + f (E1k)1k sin2(2θk)

2(12
k − ω2)

]

+ε
cf

1

[
− (q · vk) sinθk cos3 θk

(q · vk) − ω
f ′(E1k)

− 1
2f (E1k) sin(2θk)

(
cos2 θk

1k − ω
− sin2 θk

1k + ω

)]
+ε

f c

1

[
− (q · vk) sinθk cos3 θk

(q · vk) − ω
f ′(E1k)

− 1
2f (E1k) sin(2θk)

(
cos2 θk

1k + ω
− sin2 θk

1k − ω

)]
(A1.1)

N
f

1 (q, ω) = ε
f

1

[
(q · vk) sin4 θk

(q · vk) − ω
f ′(E1k) − f (E1k)1k sin2(2θk)

2(12
k − ω2)

]



Landau theory of heavy-fermion compounds: II 471

+ε
cf

1

[
− (q · vk) sin3 θk cosθk

(q · vk) − ω
f ′(E1k)

+ 1
2f (E1k) sin(2θk)

(
cos2 θk

1k − ω
− sin2 θk

1k + ω

)]
+ε

f c

1

[
− (q · vk) sin3 θk cosθk

(q · vk) − ω
f ′(E1k)

+ 1
2f (E1k) sin(2θk)

(
cos2 θk

1k + ω
− sin2 θk

1k − ω

)]
(A1.2)

N
cf

1 (q, ω) = N
f c

1 (−q, −ω) = ε
f

1

[
− (q · vk) sin3 θk cosθk

(q · vk) − ω
f ′(E1k)

+ 1
2f (E1k) sin(2θk)

(
cos2 θk

1k − ω
− sin2 θk

1k + ω

)]
+ε

cf

1

[
(q · vk) sin2 θk cos2 θk

(q · vk) − ω
f ′(E1k) − f (E1k)

(
cos4 θk

1k − ω
+ sin4 θk

1k + ω

)]

+ε
f c

1

[
(q · vk) sin2 θk cos2 θk

(q · vk) − ω
f ′(E1k) + f (E1k)1k sin2(2θk)

2(12
k − ω2)

]
(A1.3)

where for brevity we denoteεab
1 (q, ω) ≡ εab

1 , f ′(x) ≡ df (x)/dx. Deriving these equations,
we have used that

E1k+q/2 − E1k−q/2 ≈ q · ∇kE1k ≡ (q · vk)

f (E1k+q/2) − f (E1k−q/2) ≈ (q · vk)f ′(E1k)

E2k+q/2 − E1k−q/2 ≈ E2k − E1k + q · ∇kε(k) ≈ E2k − E1k ≡ 1k

(A1.4)

wherevk = ∇kE1k is the velocity of heavy quasi-particles in the bandE1k · vk is related
to the electron velocityv0k = ∇kε(k) in the conduction bandε(k) by the equation

vk = ∇kE1k = (∂E1k/∂ε(k))∇kε(k) = v0k cos2 θk. (A1.5)

1k is the direct energy gap between the lower bandE1k and upper bandE2k. The
latter equation in (A1.4) results from the fact that minimum value of1k is equal to
2b ≈ (µT0)

1/2 � T0.
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